Search results for "Interplanetary medium"
showing 10 items of 11 documents
Reconstruction of the Parker spiral with the Reverse in situ data and MHD APproach - RIMAP
2021
The reconstruction of plasma parameters in the interplanetary medium is very important to understand the interplanetary propagation of solar eruptions and for Space Weather application purposes. Because only a few spacecraft are measuring in situ these parameters, reconstructions are currently performed by running complex numerical Magneto-hydrodynamic (MHD) simulations starting from remote sensing observations of the Sun. Current models apply full 3D MHD simulations of the corona or extrapolations of photospheric magnetic fields combined with semi-empirical relationships to derive the plasma parameters on a sphere centered on the Sun (inner boundary). The plasma is then propagated in the i…
Data-driven numerical simulations of the Parker Spiral and interplanetary propagation of solar transients
2023
The accurate reconstruction of the plasma and magnetic field parameters in the ambient interplanetary medium is fundamental to reproduce the interplanetary propagation of solar disturbances such as solar energetic particles (SEPs), stream and corotating interaction regions (SIRs and CIRs), and coronal mass ejections (CMEs), both for understanding the physics of these phenomena and for applications in space weather forecasting. The small-scale features of the ambient solar wind, in fact, affect the evolution, arrival times, and geo-effectiveness of solar transients. The Reverse In situ and MHD Approach (RIMAP) is a hybrid analytical-numerical method to reconstruct the heliosphere on the ecli…
A multispacecraft analysis of a small-scale transient entrained by solar wind streams
2009
The images taken by the Heliospheric Imagers (HIs), part of the SECCHI imaging package onboard the pair of STEREO spacecraft, provide information on the radial and latitudinal evolution of the plasma compressed inside corotating interaction regions (CIRs). A plasma density wave imaged by the HI instrument onboard STEREO-B was found to propagate towards STEREO-A, enabling a comparison between simultaneous remote-sensing and in situ observations of its structure to be performed. In situ measurements made by STEREO-A show that the plasma density wave is associated with the passage of a CIR. The magnetic field compressed after the CIR stream interface (SI) is found to have a planar distribution…
Particle energization in colliding subcritical collisionless shocks investigated in the laboratory
2022
Context. Colliding collisionless shocks appear across a broad variety of astrophysical phenomena and are thought to be possible sources of particle acceleration in the Universe. Aims. The main goal of our experimental and computational work is to understand the effect of the interpenetration between two subcritical collisionless shocks on particle energization. Methods. To investigate the detailed dynamics of this phenomenon, we performed a dedicated laboratory experiment. We generated two counter-streaming subcritical collisionless magnetized shocks by irradiating two Teflon (C2F4) targets with 100 J, 1 ns laser beams on the LULI2000 laser facility. The interaction region between the plasm…
FRIPON: a worldwide network to track incoming meteoroids
2020
Context. Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fragile - hence precious - meteorites must be recovered rapidly to avoid their alteration. Aims. The Fireball Recovery and InterPlanetary Observation Network (FRIPON) scientific project was designed to overcome this limitation. This network comprises a fully automated camera and radio network deployed over a significant fraction of western Europe and a small fraction of Canada. As of today, it consists of 150 cameras and 25 European radio receiver…
The Solar Mass Ejection Imager and Its Heliospheric Imaging Legacy
2013
The Solar Mass Ejection Imager (SMEI) was the first of a new class of helio- spheric and astronomical white-light imager. A heliospheric imager operates in a fashion similar to coronagraphs, in that it observes solar photospheric white light that has been Thomson scattered by free electrons in the solar wind plasma. Compared with traditional
A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft
2009
The suite of SECCHI optical imaging instruments on the STEREO-A spacecraft is used to track a solar storm, consisting of several coronal mass ejections (CMEs) and other coronal loops, as it propagates from the Sun into the heliosphere during May 2007. The 3-D propagation path of the largest interplanetary CME (ICME) is determined from the observations made by the SECCHI Heliospheric Imager (HI) on STEREO-A (HI-1/2A). Two parts of the CME are tracked through the SECCHI images, a bright loop and a V-shaped feature located at the rear of the event. We show that these two structures could be the result of line-of-sight integration of the light scattered by electrons located on a single flux rop…
Tracing the ICME plasma with a MHD simulation
2021
The determination of the chemical composition of interplanetary coronal mass ejection (ICME) plasma is an open issue. More specifically, it is not yet fully understood how remote sensing observations of the solar corona plasma during solar disturbances evolve into plasma properties measured in situ away from the Sun. The ambient conditions of the background interplanetary plasma are important for space weather because they influence the evolutions, arrival times, and geo-effectiveness of the disturbances. The Reverse In situ and MHD APproach (RIMAP) is a technique to reconstruct the heliosphere on the ecliptic plane (including the magnetic Parker spiral) directly from in situ measurements a…
Solar and interplanetary triggers of the largest Dst variations of the solar cycle 23
2012
Abstract We present the results of an investigation from the Sun to the Earth of the sequence of events that caused major Dst decreases (Δ Dst ≤ – 100 nT during 1 h) that occurred during 1996–2005. These events are expected to be better related to geomagnetic induced current (GIC) events than those events where any geomagnetic index is far from its quiet time value. At least one full halo CME with a speed on the plane of sky above 900 km/s participates in every studied event. The seven events were triggered by interplanetary signatures, which arise as a consequence of interaction among different solar ejections. The interaction arises at different stages from the solar surface, between segm…
Mass Accretion Processes in Young Stellar Objects: Role of Intense Flaring Activity
2014
According to the magnetospheric accretion scenario, young low-mass stars are surrounded by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn have a significant role in removing the excess angular momentum from the star-disk system. Although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. On the other hand, strong flaring activity is a common feature of young stellar objects (YSOs). In the Sun, such events give rise to perturbations of the interplanetary medium. Similar but mo…